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ABSTRACT
The Pantanal is the largest inland wetland in the world and is under increasing anthropogenic threats, 
including long-term regionally intensive gold mining practices. Gold mining activities are known to 
cause the release of harmful pollutants such as mercury (Hg) to the surrounding environment. Jaguars 
(Panthera onca (Linnaeus, 1758)) are apex predators, and therefore show great potential to accumulate 
Hg by biomagnification. We hypothesize that total Hg content in the fur of jaguars from two sites within 
the Brazilian Pantanal would be significantly different as a function of distance from active gold mining 
operations. The Hg content was determined by fluorescence spectrometry. The mean ± SD Hg content in 
jaguars from the study site influenced by gold mining (SB) was compared to jaguars sampled in the area 
free of gold mining activities (CA) using a one-way ANOVA. The mean Hg content in jaguars from SB 
(673.0 ± 916.8 µg g-1) is significantly different from jaguars sampled in CA (29.7 ± 23.3 µg g-1), p = 0.03. 
The maximum recorded content of Hg was 2,010.4 ± 150.5 µg g-1, highest level ever recorded in a wild 
animal. The data indicate that Hg is an important threat to jaguars within at-risk regions of the Pantanal.
Key words: biomagnification, heavy metals, mammal, wetland.
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INTRODUCTION

Mercury (Hg) is a rare element found in 
deposits within the earth’s crust, with significant 
environmental distribution due to anthropogenic 
activities such as mining (Ehrlich and Newman 
2008, Kirby et al. 2013). The wide-spread use of 
Hg in intensive gold mining practices transforms 
the surrounding environments into pollution 
hotspots (Vieira et al. 2011). Most forms of Hg are 
toxic to biotic life (Lacerda and Fitzgerald 2001, 
Risher et al. 2002), and methylmercury (MeHg) 
is neurotoxic (Leady and Gottgens 2001, Risher 
et al. 2002, Akira et al. 2004). For organisms, 
the primary route of entry of organic Hg is the 
ingestion of MeHg-contaminated food (Callil 
and Junk 2001, Risher et al. 2002), although the 
ingestion of MeHg-contaminated water may be 
another significant contributor. 

The presence of Hg in the environment affects 
species within the food chain through the processes 
of bioaccumulation and biomagnification, as the 
pollutants accumulate in tissues of organisms and 
are made biologically available (Gutleb et al. 1997, 
Callil and Junk 2001). MeHg is typically found in 
higher concentrations in adult fishes and in larger, 
long-lived predators of aquatic organisms (Callil 
and Junk 2001, Risher et al. 2002, Chan et al. 2003, 
Fonseca et al. 2005). In mammals, MeHg is rapidly 
absorbed through the gastrointestinal tract and over 
time is redistributed to other organs and body parts, 
including fur (Wobeser and Swift 1976, Wobeser 
et al. 1976, Akira et al. 2004, Nuttall 2006). High 
concentrations of Hg has been documented in 
several free-living mammalian species, including: 
Lutra canadensis (Wren 1985, Wren et al. 1986, 
Halbrook et al. 1994, Evans et al. 1998, 2000, 
Yates et al. 2005, Sleeman et al. 2010); Lutra 
lutra (Mason 1988, Mason and Madsen 1992, 
Hyvärinen et al. 2003); Mustela vison (Wobeser 
et al. 1976, Evans et al. 2000, Yates et al. 2005); 
Neovison vison (Wobeser et al. 1976, Basu et al. 

2007); Puma concolor coryi (Roelke 1990, Roelke 
et al. 1991, Dunbar 1994, Barron et al. 2004); and 
Pteronura braziliensis (Gutleb et al. 1997, Fonseca 
et al. 2005).

The jaguar (Panthera onca) is the largest felid 
in the Neotropics, and the third largest world-
wide (Hoogesteijn and Mondolfi 1992, Soisalo 
and Cavalcanti 2006, Campos Neto et al. 2011). 
Categorized as a Near Threatened species by the 
IUCN (Caso et al. 2008), the jaguar has historically 
ranged from the southwestern US through northern 
Argentina, with current range reduced by nearly 
55% (Sanderson et al. 2002, Caso et al. 2008). 
The Pantanal population is considered one of the 
remaining strongholds of wild jaguars, whose 
density ranges from 6.5 – 6.6 individuals per 100 
km2 (Soisalo and Cavalcanti 2006). The authors 
point out yet, that a large portion of the biome 
faces augmented anthropogenic pressures such as 
ranching, agriculture and development. 

Previous studies have assessed the large-
scale environmental impacts of Hg in a variety 
of ecosystems, including in wetlands such as the 
Brazilian Pantanal (Hylander et al. 1994, 2000a, b, 
Callil and Junk 2001, Lacerda and Fitzgerald 2001, 
Leady and Gottgens 2001, Fonseca et al. 2005, 
Vieira et al. 2011, Alho and Sabino 2012). About 
200 years before this present study, metallic Hg was 
introduced in the town of Poconé in the northern 
Pantanal (Mato Grosso state, Brazil), associated 
with gold mining activities to separate gold from 
ore (Callil and Junk 2001). Prior research indicates 
that the floral and faunal diversity of the Pantanal 
is severely threatened by anthropogenic activities, 
including Hg emissions from gold mining areas 
(Alho et al. 1988, Lacerda and Salomons 1998, 
Hylander et al. 2000b, Callil and Junk 2001, Leady 
and Gottgens 2001, Fonseca et al. 2005, Alho and 
Sabino 2012).

The prey base of jaguars includes over 85 
species (Weckel et al. 2006), and includes aquatic 
mammalian, crocodilian, and fish species (Hayward 
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et al. 2016). As apex predators, jaguars are at risk 
of accumulating high concentrations of pollutants 
that are biomagnified through the food chain. To 
our knowledge, only one other study examined 
Hg content in jaguars; concentrations from the 
teeth of two deceased individuals in Colombia 
were analyzed and found that concentrations 
were significantly lower than the minimum legal 
threshold (Racero-Casarrubia et al. 2012). 

In the Brazilian Pantanal, jaguars may 
experience higher levels of Hg bioaccumulation 
and biomagnification as a result of extensive gold 
mining activities. Considering the toxic properties 
of Hg and its pervasive use at the upstream gold 
mining areas in the Pantanal floodplain, we 
hypothesize that Hg levels will be significantly 
higher in jaguars residing in the region of nearest 
proximity to gold mining operations, versus 
individuals residing in the site farther removed 
from the influence of gold mining.

MATERIALS AND METHODS

STUDY SITES

The Pantanal is a vast 140,000 km2 wetland located 
in central-western Brazil (Alho et al. 1988, Alho 
and Sabino 2012), where the elevation ranges from 
50 to 150 m above sea level (Alho and Vieira 1997). 
Individual jaguars were captured in two areas in 
the Pantanal (Fig. 1). The first site, Fazenda São 
Bento – SB (17o20’35.79”S, 56°43’39.33”W), 
is a privately owned cattle ranch and research 
headquarters located in the Itiquira River Basin 
(Mato Grosso state), 118.6 km downstream 
of Poconé (16°16’1.97”S, 56°37’35.51”W) 
in a region influenced by gold mining and Hg 
contamination. The second site, Refúgio Ecológico 
Caiman – CA (19o57’15.58”S, 56o18’15.20”W), is 
a privately-owned refuge dedicated to ecotourism 
and livestock use. Located in the Miranda River 
Basin (municipality of Miranda, Mato Grosso 
do Sul state), CA is a region free of gold mining 

activities, found 408.2 km from Poconé and 289.6 
km from SB.

The Pantanal is characterized by distinct 
seasonality, with the rainy season averaging about 
160 mm of rainfall per month (October – March) 
and dry season averaging 50 mm of rainfall per 
month (April – September; Soisalo and Cavalcanti 
2006). The seasonal nature of the Pantanal has 
significant impact on floral and faunal life, where 
water levels can rise by up to 5 m (Junk and da 
Silva 1995, Gottgens et al. 2001), with maximum 
inundation in March and minimum in October 
(Hamilton et al. 1996, Guimarães et al. 2000). 

The wetland is comprised of three distinct 
regions: the high (Alto); middle (Medio); and 
low (Baixo) (Hamilton et al. 1996, Guimarães et 
al. 2000). The Alto Pantanal possesses numerous 
veins of gold within clay layers; as a result, about 
60 gold mining sites operate within this region 
alone (Nogueira et al. 1997, Hylander et al. 2000b). 
During extraction of gold from the clay Hg is 
used as an amalgamating agent, which results in 
Hg losses to the air, soil and water (Hylander et 
al. 1994, 2000b, Alho and Vieira 1997, Guimarães 
et al. 1998, 1999, Lacerda and Salomons 1998, 
Leady and Gottgens 2001). These losses impact 
the environment on local and regional scales, due 
to the elevated levels of Hg contamination in water 
and sediments (Alho and Vieira 1997, Lacerda and 
Salomons 1998, Guimarães et al. 1999, Callil and 
Junk 2001, Leady and Gottgens 2001, Alho and 
Sabino 2012).

DATA COLLECTION

Individual jaguars were captured using soft-hold 
foot-snares (Balme et al. 2007). The captures 
occurred in June 2013 in SB and in April through 
October 2013 in CA, during optimal dry season 
conditions. We monitored the snares every 
two hours through very high frequency (VHF) 
transmitters, with snares operational from 6:00pm 
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to 7:00am. We immobilized the captured animals 
with a dissociative combination dosage of 5 mg/
kg tiletamine hydrochloride and zolazepam 
hydrochloride administered via a dart fired from 
a CO2 rifle. A unique identification number was 
assigned to each captured animal. Each individual 
was examined for general body condition, sex, 
weight, and age (adult >2 years; subadult; and 
juvenile) based on tooth wear. Fur samples were 
collected and stored in plastic bags. We performed 
animal handling and sample collection according 
to ethical procedures and animal welfare standards 
(Sikes et al. 2011), and in adherence to protocols 
of the Brazilian Environment Institute (ICMBIO; 
permit #42093-1).

MERCURY CONTENT ANALYSIS

Fur samples were triple washed with a mixture of 
diethyl ether : propanone (3:1, v/v), then submerged 

Figure 1 - Pantanal floodplain located in central-western 
Brazil, with the capture and gold mining sites, indicated by 
point location. Here, 1 - municipality of Poconé, Mato Grosso 
state (16o16’1.97”S, 56o37’35.51”W); 2 - Fazenda São Bento 
(17o20’35.79”S, 56°43’39.33”W); 3 – Refúgio Ecológico 
Caiman (19o57’15.58”S, 56o18’15.20”W), municipality of 
Miranda, Mato Grosso do Sul state.

in a solution of 5% EDTA (w/v) for 1 hour to remove 
superficial grease and dust to avoid external metal 
contamination. The samples were rinsed twice in 
ultra-purified water in a Milli-Q system (18 MΩ 
cm resistivity, oven-dried for 20 hours at 80oC, and 
then digested in a microwave oven. A mass of about 
150 mg was directly weighed in Teflon jars, and 
then combined with 6 ml of nitric acid (HNO3) sub-
boiling bi-distilled and 2 ml of hydrogen peroxide 
(H2O2). Hg analysis was performed in triplicate, in 
the Laboratory of Mass and Atomic Spectrometry 
of Universidade Federal de Santa Catarina, using 
atomic fluorescence spectrometry coupled with 
chemical vapor generation (CVG AFS). Steam 
generation conditions were regulated to: 6% (v/v) 
of HCl; 4% (w/v) of SnCl2; 0.08% (w/v) of KMnO4; 
and 0.05% (v/v) of defoamer. The accuracy of the 
methods was evaluated by analyzing one certified 
reference material (BCR-397 Human hair – 
Community Bureau of Reference) and comparing 
using a t-test at 95% confidence level. The precision 
was evaluated using relative standard deviation of 
individual samples measured in triplicate.

STATISTICAL ANALYSIS (ANOVA)

We submitted the resulting Hg content values to the 
normality Shapiro-Wilk test and converted the data 
into base10 logarithmic scales in order to reach 
the normal range. The log-transformed data were 
used in a one-way analysis of variance (ANOVA) 
in program R (R Core Team 2016). Results were 
considered significantly different at p< 0.05, and 
are expressed in units of µg g-1 ± SD in dry-weight 
basis.

RESULTS

We captured nine individual jaguars in the two 
study areas (Table I), with four in SB (3 adult 
males; 1 juvenile male), and five in CA (2 adult 
females; 2 subadult females; 1 adult male). Body 
mass averages were 102.5 ± 10.6 kg (n = 2 females) 
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The mean individual values in the CA site ranged 
from 11.3 ± 2.4 to 70.0 ± 7.2 µg g-1 (Table I). The 
untransformed mean Hg content in jaguars from 
the SB area (673.0 ± 916.8 µg g-1) was compared to 
jaguars from CA area (29.7 ± 23.1 µg g-1; Fig. 2). 
Hg concentrations were not normally distributed 
(Shapiro-Wilk p-value = 1.989e-05). The ANOVA 
was therefore performed on log-transformed data 
and indicated a significant difference between sites 
(p = 0.03). 

DISCUSSION

This is the first study to evaluate Hg content in 
jaguars from the Brazilian Pantanal, and the second 
to report Hg content for this species (Racero-
Casarrubia et al. 2012). In the present study, 
results from the log-transformed one-way ANOVA 
indicate that the mean content of Hg in the fur of 
SB jaguars was significantly different from those 
in CA.

The SB site is in close proximity to the city 
of Poconé (linear distance of 118.6 km), which 
has high levels of human activity - including 
historically intensive gold mining during the 1980s 
to 1990s, through the present day. Nearly 2 tons of 
Hg are sequestered in gold mine deposits around 

TABLE I
Biological data and Hg levels (µg g-1dry weight) in the fur of individual jaguars captured in two areas (SB; CA). Hg 

content is presented as mean ± SD (µg g-1).

Animal ID Sex Age Weight (kg) Date of Capture
Hg content (µg g-1)
SB CA

SB396 Male Adult 105 90 June 2013 133.2 ± 27.1 ---
SB434 Male Juvenile 10 19 June 2013 26.1 ± 5.1 ---
SB414 Male Adult 106 20 June 2013 522.1 ± 27.9 ---
SB435 Male Adult 76 21 June 2013 2010.4 ±150.5 ---
CA432 Female Subadult 61 14 April 2013 --- 70.3 ± 7.2
CA433 Female Adult 95 16 April 2013 --- 20.5 ± 2.9
CA439 Male Adult 115 18 October 2013 --- 11.3 ± 2.4
CA440 Female Adult 110 21 October 2013 --- 25.8 ± 6.3
CA445 Female Subadult 81 27 October 2013 --- 20.8 ± 4.6

SB = Fazenda São Bento; CA = Refúgio Ecológico Caiman.

and 100.5 ± 16.9 kg (n = 4 males) for adult females 
and for adult males, respectively. The average 
value obtained for Hg in the reference sample BCR 
397 Human hair was 11.9 ± 0.2 µg g-1, which was 
not significantly different from the certified value 
of 12.0 ± 0.5 µg g-1.

The CVG AFS measurements used to analyze 
the jaguar fur samples were determined satisfactory 
through external calibration with an aqueous 
standard (linear correlation coefficient, R > 0.9999). 
The analysis included reasonable precision as 
indicated by relative standard deviations (RSD) of 
less than 8% (n = 3). The limit of detection (LOD) 
was defined as three times the standard deviation of 
ten measurements of the blank sample, divided by 
the slope of the calibration curve. Using an aliquot 
of 0.15 g dried jaguar fur sample digested in a 50-
mL final volume solution, we obtained an estimated 
LOD of 0.07 μg g-1. The limit of quantification 
(LOQ) was defined as 3.3 times the LOD. The 
LOQ was estimated at 0.23 μg g-1 and considered 
adequate for the fur samples.

The mean content of Hg in individual jaguar 
fur samples (n = 3 per animal) varied widely among 
individuals from the SB site, ranging from 26.1 ± 
5.1 µg g-1 in a juvenile male, to 2,010.4 ± 150.5 µg g-1. 
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the Poconé region (Lacerda et al. 1991a, Callil 
and Junk 2001). The process of amalgamation in 
gold mining results in environmental degradation 
ranging from the direct release of Hg into the water, 
and the erosion of riverbanks due to high-pressure 
water jets (Vieira et al. 2011). Rainfall, coupled 
with anthropogenically-induced high levels of 
erosion (e.g., agriculture; clear-cutting along 
riverbanks), causes Hg to percolate through the 
water table and into the lowland plateau (Hylander 
et al. 2000a). This percolation effect may result in 
the overall higher concentrations of Hg observed in 
the sampled individuals of SB versus CA. Although 
the CA study site is free from direct gold mining 
influence, we recorded Hg contents in the fur of 
jaguars that ranged from 11.3 – 70.3 µg g-1. This 
may be due to the latent percolation effects, where 
Hg is carried by floodwaters from the northern to 
the southern regions of the Pantanal.

Maximum concentrations of Hg were 
previously recorded in the teeth of jaguars in 
Colombia (0.0887 ± 0.013 μg g-1fresh weight; 
Racero-Casarrubia et al. 2012) and were considered 
below harmful biotic limits (0.05 μg g-1; Allen 
1989, WHO 1991). As there is a current absence of 
further literature on Hg levels in jaguars, we draw 
further comparisons to a diverse base of existing 

studies which reported Hg concentrations in other 
mammalian species (Table II). For example, in 
North America, published studies of Puma c. coryi 
in the Everglades reported maximal Hg contents 
of 90 µg g-1 (fur) and 110 µg g-1 (liver) dry weights 
(Roelke 1990, Roelke et al. 1991, Dunbar 1994, 
Barron et al. 2004). The next highest recorded Hg 
value of 183 µg g-1 (fresh weight) was reported 
in the fur of L. canadensis (Sleeman et al. 2010). 
With a conversion of 3:1 of dry : wet weight (Puls 
1994), the value detected by Sleeman et al. (2010) 
increases to 549 µg g-1. HgTot in human hair 
collected from villagers living near Poconé ranged 
from 0.3 to 3.11 µg g-1 (Nogueira et al. 1997). Such 
concentrations are in stark contrast to the World 
Health Organization Hg limit of 0.05 µg g-1 (Allen 
1989, WHO 1991). Our data suggest that the Hg 
content in the fur of jaguars from SB is the highest 
ever recorded in wild mammals.

The food web within the Pantanal is complex 
and includes diverse communities of both 
aquatic and terrestrial biota (Junk et al. 2006). 
Aquatic predators can accumulate Hg through the 
consumption of contaminated prey (Callil and Junk 
2001), resulting in high concentrations of Hg in 
the aquatic food chain (Leady and Gottgens 2001). 
Lacerda et al. (1991b) recorded Hg concentrations 
of about 0.91 ± 0.06 µg g-1 in Pomacea caniculata 
near gold mines in the northern Pantanal. 
Within the same region, Callil and Junk (2001) 
recorded values as high as 2.04 ± 1.27 µg g-1 of 
Hg in Pomacea scalaris. Hylander et al. (2000b) 
recorded total mercury (HgTot) content as high 
as 2.05 μg g-1 fresh weight in a predatory fish 
(Serrasalmus spp.) in a creek in Alto Pantanal, near 
Poconé, that ranged from 0.04 to 2.05 µg g-1 (fresh 
weight). High values of Hg were also detected in 
Serrasalmus spiropleura (0.15 µg g-1; dry weight) 
and Pygocentris nattereri (0.30 µg g-1; dry weight) 
from Hg-impacted regions in the northern Pantanal 
(Leady and Gottgens 2001). 

Figure 2 - Total Hg content (µg g-1 dry weight ± SD) in the 
fur of jaguars by capture site. Here, SB = Fazenda São Bento 
(n = 4 individuals); CA = Refúgio Ecológico Caiman (n = 5 
individuals).
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TABLE II 
Maximum Hg level (µg g-1 dry weight) detected in the fur of jaguars (Panthera onca) from the Brazilian Pantanal in 

comparison to Hg contents (µg g-1 dry or wet weight) reported in previously published mammalian studies.

Species Location Tissue
Maximal Content(µg g-1)

Reference
Dry Weight Wet Weight

N. vison Saskatoon, Canada Liver 58.2 --- Wobeser and Swift (1976)
Kidney 34.9 ---

Fur 31.9 ---
Muscle 15.2 ---
Brain 13.4 ---

L. canadensis Ontario, Canada Liver 96.0 --- Wren (1985)
Kidney 58.0 ---
Muscle 36.0 ---
Brain 30.0 ---

P. c. coryi Florida, USA Liver --- 110 Dunbar (1994)
Fur --- 90.0

P. Braziliensis Brazilian Pantanal Kidney --- 4.59 Fonseca et al. (2005)
Liver --- 4.30
Fur --- 3.68

Muscle --- 0.17
L. canadensis Virginia, USA Kidney 353.0 --- Sleeman et al. (2010)

Liver 221.0 ---
Fur --- 183.0

Brain 151.0 ---
Muscle 121.0 ---

P. onca Colombia Teeth --- 0.0887 Racero-Casarrubia et al. (2012)
P. onca Brazilian Pantanal Fur 2,010.04 --- Present study 

Hg has also been reported in crocodilian 
species (Yanochko et al. 1997, Elsey et al. 1999, 
Burger et al. 2000, Rumbold et al. 2002), including 
Caiman c. yacare from areas of intensive human 
activity in the Brazilian Pantanal (0.02 to 0.36 
µg-1 wet weight; Vieira et al. 2011). The relatively 
high Hg values recorded in different levels of the 
ecosystem corroborate the presence of an elevated 
rate of biomagnification in the Hg-impacted 
Pantanal region.

Previous research indicates that fish and 
apex predators within the aquatic community 
tend to store Hg in readily-digestible muscle, 
whereas avian and mammalian species store Hg 
in feathers and fur (Hylander et al. 2000b, Leady 
and Gottgens 2001, Risher et al. 2002, Davis 

et al. 2003). The accumulation of Hg within the 
food chain is greatest in long-lived, apex species 
(Roelke 1991, Callil and Junk 2001, Leady and 
Gottgens 2001, Chan et al. 2003). Jaguars are 
generally opportunistic top predators with flexible 
diets (Emmons 1987, Cavalcanti and Gese 2010, 
Da Silveira et al. 2010), and will often prey upon 
Hydrochaeris hydrochaeris and Caiman c. yacare 
when available, but will also consume small (<1 
kg), medium (1-15 kg), and large terrestrial prey 
(>15 kg; Polisar et al. 2003, Weckel et al. 2006, 
Azevedo and Murray 2007, Da Silveira et al. 2010, 
Perilli et al. 2016). 

With the Brazilian Pantanal’s remarkable 
biodiversity, complex food web, and human 
population that relies on high per capita fish 
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consumption, understanding Hg dynamics and the 
risks of exposure is therefore particularly urgent 
(Leady and Gottgens 2001) for informing wildlife 
conservation plans and human health programs in 
the greater Pantanal region. The jaguar may serve 
as a useful indicator species for the continued 
monitoring of Hg concentrations within this 
environment.

CONCLUSIONS

Contamination of Hg in the biotic and abiotic 
factors of the ecosystem is well documented in the 
Brazilian Pantanal, and appears to bioaccumulate 
through aquatic, carnivorous links in the food web. 
With the highest body burdens observed in jaguars 
from the northern Pantanal region of SB, where 
gold mining activities were most intensive, our 
data suggest that the Hg content in an individual 
jaguar from the Brazilian Pantanal is the highest 
ever recorded in wild animals. Chronic exposure of 
jaguars to Hg may potentially compromise relative 
individual health and productivity. Thus, Hg should 
be considered a threat to this key species. The 
jaguar may serve as a sentinel species for short- and 
long-term study and monitoring. Further research 
is needed to further quantify the degree of Hg 
contamination within the greater Pantanal region.
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